
WAY

ARCHITECT
THE

Jan Jongboom
Yet Another Conference
1 October 2012, Moscow



@drbernhard







Program

• Cloud9? 5 minute intro + what's new

• Problems growing your codebase

• Introducing: Architect!

• Lessons learned



Normal developers



JavaScript Developer



Для динамического 
программирования, я 
выбираю Cloud9







Debugging



(Smart!) Code completion



Free Linux VM!



Real terminal



Collaboration



See each other type

Debug together

Productivity++



Program

• Cloud9? 5 minute intro + what's new

• Problems growing your codebase

• Introducing: Architect!

• Lessons learned



Pure madness



Remote VM

Cloud9 datacenter

IDE server Remote VM

Remote VM

Openshift



• A codebase needs modularization

• Modularization abstracts features away

• Teams can work on separate features without 
breaking code

Rules of Jan



Modularization?

• Node.js has require

• Similar to ‘using’ or ‘import’ in .NET / Java

• Great for abstracting away functionality

• But not for application modularity





• Relies on the filesystem

• Two modules, same dependencies? 
Copy or symlink

• Maps to folder name

• Configuration is hard

• Multiple instances

Downsides of require



No dependency 
model

• Static compilation: build dependency tree on 
compile time

• Dependency tree not good? Compilation 
error!

• Require fails at runtime



Now fix it!

• Static dependency list

• Resolve at startup

• Named services

• No longer require filesystem

• Easy configuration options



Program

• Cloud9? 5 minute intro + what's new

• Problems growing your codebase

• Introducing: Architect!

• Lessons learned



Architect

• Every piece of functionality is a plugin

• Plugins can consume other plugins

• An application is a set of plugins





• Declare entity ‘jan’ with behavior

• Use ‘jan’ to do a presentation



Group functions 
by behavior



Jan (presenter) Presentation

Dependency model



How to express our 
model

• Package.json

• Metadata file (default to node)

• Allows to build dependency tree w/o 
executing code





What’s next?

• Extract the code

• Wrap in Architect plugin code

• It’s simple!

• Make two plugins



Function signature

Call when done



Architect plugin 
code

• Module.exports

• Options, will get to that

• Imports, everything you ‘consume’

• Register, invoke when done





Dependencies 
abstracted away

• Easily unit testable

• Mock dependencies

• Assert ‘dance’ function is called 11 times





No black magic

• Dependency model needs to be specified

• Feed Architect a config file

• Simple array with list of plugins

• Call ‘createApp’







Configuration

• Per-plugin options

• No global options object

• Specify in config file







Options

• Automatically passed in at startup

• Options are also dependencies

• Fail if options aren’t present

• Use default assertions







Architect makes you think of 
your app as 

chunks of functionality
rather than sets of classes



Think ‘chunks of 
functionality’

• Implicit type constraints

• Keep implementation private

• Swap feature implementations

• Rather than interface implementations



How do we use it?

• Open source version

• Local version (OS + sync)

• Hosted version

• Normal

• FTP

• SSH





Swap feature per 
implementation

• On Open source: talk local filesystem

• On FTP: talk FTP library

• On SSH: log in and talk via a SSH bridge



Here is something 
your DI framework 

can’t do



IDE instance
(FTP)

IDE instance
(SSH)

IDE instance
(Normal)

IDE instance
(Normal)

Single node.js process

Other code 
(dashboard etc.)





Architect can do

• Multiple instances of same plugin

• Run independent

• In separate contexts

• But in the same process

• Manageable

• No process overhead







HERE’S SOMETHING 
COOL



Centralized eventbus

• Loose coupling between plugins

• No hard dependencies!

• Can also do inter-context communication



Eventbus

Plugin

Other plugin

Emit event

React on event







And now scale up

• Need something inter-server

• Swap it with i.e. Redis PubSub

• Plugins will never notice

• Awesome!



Program

• Cloud9? 5 minute intro + what's new

• Problems growing your codebase

• Introducing: Architect!

• Lessons learned



Modularize in feature 
blocks

• Don’t over engineer

• Don’t create too small blocks

• They are no interfaces!



Use dependency 
injection

• Architect (javascript)

• StructureMap (.NET)

• Spring (Java)



Avoid context 
switching

• Less code!

• Less errors!

• Less boilerplate!

• StructureMap has some basics for this as well



Loose coupling

• Eventbus

• Smaller dependency graph



github.com/c9/yac2012

github.com/c9/architect

http://c9.io
http://c9.io
http://c9.io
http://c9.io
http://c9.io
http://c9.io


Happy coding!



Jan Jongboom
github.com/janjongboom

@drbernhard

http://c9.io

http://c9.io
http://c9.io

